1.Giới thiệu về Apache Spark
+ Apache Spark là một framework mã nguồn mở tính toán cụm, được phát triển sơ khởi vào năm 2009 bởi AMPLab . Sau này, Spark đã được trao cho Apache Software Foundation vào năm 2013 và được phát triển cho đến nay.
+ Tốc độ xử lý của Spark có được do việc tính toán được thực hiện cùng lúc trên nhiều máy khác nhau. Đồng thời việc tính toán được thực hiện ở bộ nhớ trong (in-memories) hay thực hiện hoàn toàn trên RAM.
+ Spark cho phép xử lý dữ liệu theo thời gian thực, vừa nhận dữ liệu từ các nguồn khác nhau đồng thời thực hiện ngay việc xử lý trên dữ liệu vừa nhận được ( Spark Streaming).
+ Spark không có hệ thống file của riêng mình, nó sử dụng hệ thống file khác như: HDFS, Cassandra, S3,…. Spark hỗ trợ nhiều kiểu định dạng file khác nhau (text, csv, json…) đồng thời nó hoàn toàn không phụ thuộc vào bất cứ một hệ thống file nào.
+ Spark cho phép xây dựng và phân tích nhanh các mô hình dự đoán. Hơn nữa, nó còn cung cấp khả năng truy xuất toàn bộ dữ liệu cùng lúc, nhờ vậy ta không cần phải lấy mẫu dữ liệu – đòi hỏi bởi các ngôn ngữ lập trình như R. Thêm vào đó, Spark còn cung cấp tính năng streaming, được dùng để xây dựng các mô hình real-time bằng cách nạp toàn bộ dữ liệu vào bộ nhớ.
+ Khi có một tác vụ nào đó quá lớn mà không thể xử lý trên một laptop hay một server, Spark cho phép ta phân chia tác vụ này thành những phần dễ quản lý hơn. Sau đó, Spark sẽ chạy các tác vụ này trong bộ nhớ, trên các cluster của nhiều server khác nhau để khai thác tốc độ truy xuất nhanh từ RAM. Spark sử dụng API Resilient Distributed Dataset (RDD) để xử lý dữ liệu.
2. Kiến trúc Apache Spark
+ Spark có kiến trúc gồm một node master và nhiều node worker dưới sự điều khiển của master. Spark Driver sẽ liên hệ với master node để điều phối các worker node nơi có chứa các excutor đang thực thi job.
+ Master node chứa chương trình điều khiển (Spark Standalone / YARN/ MESSO), các worker node, chương trình lập lịch sẽ chịu trách nhiệm lập lịch cho các tác vụ và yêu cầu các worker node thực hiện. Mỗi worker bao gồm một hoặc một số Excutor thực hiện việc lưu trữ, đọc ghi khi xử lý dữ liệu. Mỗi excutor chịu trách nhiệm xử lý các task nhỏ riêng biệt bằng các luồng độc lập.
3. Quản lý bộ nhớ của Apache Spark
+ Xét về khía cạnh memory, Spark giải quyết các vấn đề vấn đề xung quanh định nghĩa Resilient Distributed Datasets (RDDs). RDDs hỗ trợ hai kiểu thao tác thao tác: transformations và action..Thao tác chuyển đổi(tranformation) tạo ra dataset từ dữ liệu có sẵn. Thao tác actions trả về giá trị cho chương trình điều khiển (driver program) sau khi thực hiện tính toán trên dataset.
+ Spark thực hiện đưa các thao tác RDD chuyển đổi vào DAG (Directed Acyclic Graph) và bắt đầu thực hiện. Khi một action được gọi trên RDD, Spark sẽ tạo DAG và chuyển cho DAG scheduler. DAG scheduler chia các thao tác thành các nhóm (stage) khác nhau của các task.
+ Mỗi Stage bao gồm các task dựa trên phân vùng của dữ liệu đầu vào có thể pipline với nhau và có thể thực hiện một cách độc lập trên một máy worker. DAG scheduler sắp xếp các thao tác phù hợp với quá trình thực hiện theo thời gian sao cho tối ưu nhất.
Ví dụ: các thao tác map sẽ được đưa vào cùng một stage do không xảy ra shuffle dữ liệu giữa các stage. Kết quả cuối cùng của DAG scheduler là một tập các stage. Các Stages được chuyển cho Task Scheduler. Task Scheduler sẽ chạy các task thông qua cluster manager (Spark Standalone/Yarn/Mesos). Task scheduler không biết về sự phụ thuộc của các stages. Nó chỉ chịu trách nhiệm thực hiện sắp xếp các task một cách tối ưu nhất.
+ Mỗi Worker bao gồm một hoặc nhiều Excutor. Các excutor chịu trách nhiệm thực hiện các task trên các luồng riêng biệt. Việc chia nhỏ các task giúp đem lại hiệu năng cao hơn, giảm thiểu ảnh hưởng của dữ liệu không đối xứng (kích thước các file không đồng đều).
4. Thành phần của Apache Spark
Thành phần trung gian của Spark là Spark Core: cung cấp những chức năng cơ bản nhất của Spark như lập lịch cho các tác vụ, quản lý bộ nhớ, fault recovery, tương tác với các hệ thống lưu trữ…Đặc biệt, Spark Core cung cấp API để định nghĩa RDD (Resilient Distributed DataSet) là tập hợp của các item được phân tán trên các node của cluster và có thể được xử lý song song.
Spark có thể chạy trên nhiều loại Cluster Managers như Hadoop YARN, Apache Mesos hoặc trên chính cluster manager được cung cấp bởi Spark được gọi là Standalone Scheduler.
- Spark SQL cho phép truy vấn dữ liệu cấu trúc qua các câu lệnh SQL. Spark SQL có thể thao tác với nhiều nguồn dữ liệu như Hive tables, Parquet, và JSON.
- Spark Streaming cung cấp API để dễ dàng xử lý dữ liệu stream,
- MLlib Cung cấp rất nhiều thuật toán của học máy như: classification, regression, clustering, collaborative filtering…
- GraphX là thư viện để xử lý đồ thị.
- Một trong những lý do khiến Spark chạy nhanh hơn Hadoop MapReduce đó là ở mỗi tác vụ dữ liệu được nạp lên bộ nhớ và xử lý ở đó, những tác vụ sau có thể sử dụng dữ liệu nằm trên bộ nhớ thay vì phải đọc ghi liên tục vào HDFS như Hadoop MapReduce (xem minh họa phía dưới)
Hadoop MapReduce
Spark
5.Tại sao nên sử dụng Apache Spark
Những tính năng nổi bật
- “Spark as a Service”: Giao diện REST để quản lí (submit, start, stop, xem trạng thái) spark job, spark context
- Tăng tốc, giảm độ trễ thực thi job xuống mức chỉ tính bằng giây bằng cách tạo sẵn spark context cho các job dùng chung.
- Stop job đang chạy bằng cách stop spark context
- Bỏ bước upload gói jar lúc start job làm cho job được start nhanh hơn.
- Cung cấp hai cơ chế chạy job đồng bộ và bất đồng bộ
- Cho phép cache RDD theo tên , tăng tính chia sẻ và sử dụng lại RDD giữa các job
- Hỗ trợ viết spark job bằng cú pháp SQL
- Dễ dàng tích hợp với các công cụ báo cáo như: Business Intelligence, Analytics, Data Integration Tools
Nhờ triển khai Coordination Framework Apache ZooKeeper – cung cấp giải pháp quản lý, điều phối giao tiếp giữa các hệ thống phân tán (distributed systems) – mà Spark Server được đảm bảo tính sẵn sàng (high availability) theo mô hình active – active (load-balancing)
Những điểm sáng giá ngoài tốc độ tính toán nhanh của Spark
Sự đơn giản: Một trong những chỉ trích thường gặp ở Hadoop đó là sự phức tạp trong qúa trình phát triển, mặc dù đây là một trong những phương pháp tính toán đơn gỉan và hiệu qủa gíup tăng tốc độ xử lý của hệ thống. Thay vì đòi hỏi người dùng phải hiểu rạch ròi về MapReduce và lập trình Java, Spark sinh ra để gíup mọi người tiếp cận với công nghệ tính toán song song dễ dàng hơn rất nhiều. Người dùng chỉ cần một vài kiến thức cơ bản về database cộng với lập trình Python hay Scala là có thể sử dụng được.
Độc lập với các nhà cung cấp dịch vụ Hadoop: Hầu hết các nhà cung cấp dịch vụ Hadoop đều hỗ trợ Spark. Điều này có nghĩa Spark không phụ thuộc vào các nhà cung cấp này. Nếu bạn muốn thay đổi nhà cung cấp dịch vụ, ta chỉ cần đem hệ thống Spark qua nhà cung cấp mới mà không lo ngại việc mất mát thông tin.
+ Theo một so sánh, năm 2013 Hadoop sử dụng cluster bao gồm 2100 máy và mất 72 phút để sắp xếp 100 TB dữ liệu, trong khi Spark cần số lượng máy bằng 1/10 nhưng sắp xếp chỉ mất 23 phút. Trong nhiều trường hợp Spark có thể chạy nhanh hơn từ 30-50 lần so với Hadoop MapReduce.
Để thấy được bức tranh toàn cảnh về Spark, hãy cùng xem một số thống kê:
+ Trong các thư viện mà Spark cung cấp thì có 69% người dùng Spark SQL, 62% sử dụng DataFrames, Spark Streaming và MLlib + GraphX là 58%
Lập trình viên có thể viết các ứng dụng Spark bằng nhiều ngôn ngữ khác nhau. Năm 2014, 84% người dùng sử dụng Scala, trong khi Java và Python cùng là 38% (Người dùng có thể sử dụng nhiều hơn 1 ngôn ngữ trong các ứng dụng của mình). Đến năm 2015, Spark hỗ trợ thêm ngôn ngữ R, rất nhanh chóng có tới 18% người dùng R, Python cũng tăng lên 58%.
Năm 2015, Spark trở thành dự án mã nguồn mở sôi động nhất trong lĩnh vực dữ liệu lớn khi thường xuyên được cập nhật bởi hơn 800 lập trình viên từ 200 công ty trên khắp thế giới.
6. Một vài thống kê thú vị
- 62% số người khảo sát dùng Spark với HDFS, 46% sử dụng với các hệ quản trị CSDL như Cassandra, HBase, Hive, Tachyon, 41% đang sử dụng với Kafka, và 29% đang sử dụng cùng Amazon S3.
- Đối với hệ quản trị cluster, 56% đang chạy độc lập Spark, 42% sử dụng YARN, và 26% sử dụng Apache Mesos.
- Đối với ngôn ngữ lập trình, 88% sử dụng Scala, 44% sử dụng Java, và 22% sử dụng Python.
- Mức độ quan tâm của doanh nghiệp về Spark: 91% về tốc độ tính toán, 77% về việc dễ lập trình, 71% về việc dễ phát triển, 64% về các công cụ phân tích dữ liệu tiên tiến, 52% về real-time streaming.
- Sử dụng Spark trên 206 hệ thống EC2 để sắp xếp 100TB dữ liệu chỉ tốn 23 phút. Trong khi đó, kỉ lục trước đây trên Hadoop sử dụng MapReduce trên 2,100 máy tính phải tiêu tốn 72 phút. Điều này có nghĩa rằng Spark sắp xếp dữ liệu nhanh gấp 3 lần Hadoop mà chỉ sử dụng ít hơn 10 lần số máy tính.
7. Một số hình ảnh tổng quan về hệ sinh thái BigData
8.Một số site tham khảo về Spark & cách cài đặt, triển khai.
- https://tech.fpt.com.vn/apache-spark-nhan-to-cong-nghe-moi-trong-cuoc-cach-mang-du-lieu-lon/
- http://datastrophic.io/core-concepts-architecture-and-internals-of-apache-spark/
- http://backtobazics.com/big-data/6-steps-to-setup-apache-spark-1-0-1-multi-node-cluster-on-centos/
- http://davidssysadminnotes.blogspot.com/2016/01/installing-spark-centos-7.html
- https://mapr.com/blog/performance-tuning-apache-kafkaspark-streaming-system/
- https://jaceklaskowski.gitbooks.io/mastering-apache-spark/spark-tuning.html
- http://codingpearls.com/big-data/apache-spark/cai-dat-apache-spark-cluster-tren-he-dieu-hanh-linux-ubuntu.html
No Comments on [BIGDATA] Apache SPARK